Journées Promotion
Procédés Produits (J3P):

Journée Scientifique: Procédés hydrométallurgiques pour la récupération et le recyclage des métaux

“Valorisation de Vanadium”

Neilesh SYNA
AREVA Mines / SEPA
Nancy, mardi 8 Juillet 2014
Reference: SEPA/SET-NS/EG-2014/1627
Plan

- Introduction
 - AREVA
 - AREVA Mines
 - Centre d’innovation minière (ex SEPA)
- Objective
- Motivation
- Cominak operation (Niger)
- V recovery from U process raffinate (flowsheet development)
 - Separation and purification
 - Product finishing
- Conclusions and future work
TWO COMPLEMENTARY ENERGIES

To supply ever safer energy with less CO₂ to the greatest number of people.

NUCLEAIRE ➔ A WORLD LEADER

- Integrated offer
 Covering every stage of the nuclear fuel cycle, reactor design and construction, and operating services.

RENEWABLE ENERGIES ➔ A KEY PLAYER

- High-tech solutions
 Offshore Wind / Bioenergy / Concentrated Solar / Energy Storage

Employees 45,340
Sales revenue €9,240M
Backlog €41,521M
2013 Production: ~59,000 tU
AREVA Mines: 9,325 tU = 15% of global production
(2nd only to KazAtomProm (19%))
Centre d’Innovation Minière (ex SEPA)

- Employees 80
- Revenue €14M
- Clients External (55%) Internal (45%)

4 Sections
- Section Laboratoire d’Essais (LAB)
- Section Pilotes Industriels (SPI)
- Section Analyses (SAN)
- Section Etudes (SET)

Competencies
- Mineral processing
- Hydrometallurgy
- Pyrometallurgy
- Analysis
- U, Th, Au, Mo, V, REE

Régime ICPE:
- U (10 t)
- Th (600 kg)

Certifications
- COFRAC (pgres 100-1 (eaux nat.)/ 135 (radionucléides) / 156 (boues))
- ISO 14001 and OHSAS 18001

Objective

Reduce costs for existing operations (or new projects) by developing processes that can best deliver optimum values for other accompanying metals:

◆ Operations
 - Cominak (Niger): V
 - Katco (Kazakhstan): Re

◆ Projects
 - Imouraren (Niger): V
 - Midwest (Canada): Cu, Ni and Co
Vanadium
(used principally for steel, specialty steels and recently for energy storage applications)
Vanadium
(used principally for steel, specialty steels and recently for energy storage applications)

Synergy with Renewable Energies BG for Vanadium Redoxflow Battery (VRB) production

Cominak operation

Raffinate V/U = ~33%, 500 t/yr in effluent

2 Mlbs V_2O_5 @ $US 6.25/lb V_2O_5$; eqv. to $US 11/lb V$

(or 6 Ml of V electrolyte @ $US 5/l, eqv. to $US 28/lb V$)

Questions to consider:

- **Product type?**
 - Metal oxides and/or Metal salts
- **Quality of product?**
 - Grade and radioactivity
- **Process?**
 - CAPEX and OPEX
V recovery from U process raffinate

AMEX SX Process

Advantages
- ✔️ No Fe\(^{3+}\) co-extraction
- ✔️ High solvent charge
- ✔️ Fast kinetics (30s)

Disadvantages
- ❌ Solvent degradation
- ❌ **Selective strip inefficient**
DAPEX SX Process

- **Disadvantages**
 - Fe$^{3+}$ co-extraction
 - Lower solvent charge
 - Slower kinetics (120s)

- **Advantages**
 - No solvent degradation
 - Selective strip possible
Batch reduction (using Fe⁰) followed by standing Fe re-oxidation

Continuous process requires bleed solvent treatment for:
- Fe³+ via HCl (to leach) and
- U via Na₂CO₃ (to U recovery)
DAPEX SX pilot

Extraction

Strip

Scrub, Wash & Acidification
DAPEX SX pilot

Fe scrub

![Fe scrub graph](image)

<table>
<thead>
<tr>
<th>Metal</th>
<th>Extraction</th>
<th>V Strip</th>
<th>Fe Scrub</th>
<th>H₂O Wash</th>
<th>H₂SO₄ Contact</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th</td>
<td>20%</td>
<td>90%</td>
<td>< 1%</td>
<td>< 1%</td>
<td>< 1%</td>
<td>18%</td>
</tr>
<tr>
<td>U</td>
<td>95%</td>
<td>< 1%</td>
<td>8%</td>
<td>5%</td>
<td>5%</td>
<td>16%</td>
</tr>
<tr>
<td>Fe</td>
<td>7%</td>
<td>< 1%</td>
<td>95%</td>
<td>< 1%</td>
<td>8%</td>
<td>7%</td>
</tr>
<tr>
<td>V</td>
<td>> 99%</td>
<td>> 99%</td>
<td>98%</td>
<td>< 1%</td>
<td>< 1%</td>
<td>99%</td>
</tr>
</tbody>
</table>

V eluate composition

<table>
<thead>
<tr>
<th>Element</th>
<th>As</th>
<th>COT</th>
<th>Fe</th>
<th>P</th>
<th>Si</th>
<th>Th</th>
<th>U</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc (mg/l)</td>
<td>1</td>
<td>199</td>
<td>1 560</td>
<td>108</td>
<td>1</td>
<td>11</td>
<td>4</td>
<td>39 200</td>
</tr>
<tr>
<td>[Metal]/V (ppm)</td>
<td>30</td>
<td>5 077</td>
<td>39 796</td>
<td>2 755</td>
<td>26</td>
<td>281</td>
<td>109</td>
<td>-</td>
</tr>
</tbody>
</table>

Product finishing: Option 1a – Metal oxide

Direct (without oxidation) precipitation

\[2\text{VOSO}_4 + 4\text{NH}_4\text{OH} \rightarrow \text{V}_2\text{O}_4 \downarrow + 2(\text{NH}_4)_2\text{SO}_4 + 2\text{H}_2\text{O} \]

\[\text{V}_2\text{O}_4 + \frac{1}{2}\text{O}_2 + \Delta \rightarrow \text{V}_2\text{O}_5 \]
Product finishing: Option 1a – Metal oxide

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V content</th>
<th>Fe content</th>
<th>P content</th>
<th>Si content</th>
<th>U + Th content</th>
<th>Radioactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>conformity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intensity counts

Precipitate and Oxide product

2 theta

Quality?
- Incapable of meeting grade and radioactivity (due to Th and U co-precipitation) unviable

Product and price?
- Metal oxide at conventional market price

Process?
- 4 stages (low CAPEX and OPEX)
Product finishing: **Option 1b – Metal oxide**

Indirect (with oxidation) precipitation

\[
\text{VOSO}_4 + \frac{1}{2} \text{O}_2 + 2\text{NH}_4\text{OH} \rightarrow \text{HVO}_3 \downarrow + (\text{NH}_4)_2\text{SO}_4
\]

\[
2\text{HVO}_3 + \text{Na}_2\text{CO}_3 \rightarrow 2\text{NaVO}_3 + \text{H}_2\text{O} + \text{CO}_2 \uparrow
\]

\[
2\text{NaVO}_3 + (\text{NH}_4)_2\text{SO}_4 \rightarrow 2\text{NH}_4\text{VO}_3 \downarrow + \text{Na}_2\text{SO}_4
\]

\[
2\text{NH}_4\text{VO}_3 + \Delta \rightarrow \text{V}_2\text{O}_5 + \text{NH}_3 \uparrow + \text{H}_2\text{O}
\]
Product finishing: **Option 1b – Metal oxide**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V content</th>
<th>Fe content</th>
<th>P content</th>
<th>Si content</th>
<th>U + Th content</th>
<th>Radioactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial conformity</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Quality ?
- Capable of meeting grade and radioactivity specifications

Product and price ?
- Metal oxide at conventional market price

Process ?
- 8 stages (increased CAPEX and OPEX ☑ viable)
Product finishing: **Option 2 – Metal salt**

Crystallisation

- V solubility function of acidity and heat
- Evaporative concentration (for V saturation) followed by seeding for nucleation

![Graph showing V solubility function of acidity and heat](image)

\[\text{VOS}_4 + H_2O + H_2SO_4 + \Delta \rightarrow \text{VOS}_4 \downarrow + H_2O \uparrow + H_2SO_4 \]
Product finishing: **Option 2 – Metal salt**

- Fe deportment in V eluate to be managed in SX circuit

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V content</th>
<th>Fe content</th>
<th>P content</th>
<th>Si content</th>
<th>U + Th content</th>
<th>Radioactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial conformity</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
Quality?
- Capable of meeting grade and radioactivity specifications

Product and price?
- Metal salt ($\text{VOSO}_4 \cdot x\text{H}_2\text{O}$) at a premium price (compared to V_2O_5)

Process?
- 3 stages (low CAPEX / OPEX, preferred route)
Conclusions and future work

Conclusions

- DAPEX SX viable for V recovery from U process raffinate solution
- Product finishing ➔ metal salt preferred

<table>
<thead>
<tr>
<th>Flowsheet</th>
<th>Least n° of stages</th>
<th>Product grade and quality</th>
<th>Product value</th>
<th>Overall preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1a (metal oxide)</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Option 1b (metal oxide)</td>
<td>+</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Option 2 (metal salt)</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Future work

- Examine ion exchange (IX) resins (instead of solvents) for the same duty
- Conduct financial study to validate flowsheet(s) selection
- Economics (+) ➔ discuss the next stage with management for on-site piloting
- Technology equally applicable to Imouraren project (to verify)

Acknowledgments

- Organisers of the J3P congress
- AREVA Mines
Merci pour votre attention

Questions ?