

Simulation de phénomènes multi-échelles dans les procédés sidérurgiques

P. Gardin avec les contributions de: M. Simonnet, S. Vincent, Trèfle, Bordeaux

Context

- Different phases are simultaneously present in a steel making reactor: slag, liquid steel, argon, top gas, inclusions (liquid, solid), which can strongly interact (momentum, heat and mass transfer), water/vapour:
 - Experimental facility: good for understanding scale up: most of the time difficult
 - Numerical models: can deal with industrial process most of the time: assumptions on mechanisms
- Mechanisms to be studied:
 - a wide range of length scales: from nanometers for nucleation of inclusion in liquid steel to several meters for flow characteristics
 - With mesh: secure method for conservative equations, but cannot considered mechanisms at lower length scale than mesh size
 - Meshless technique: much easier to cope with multiscale problems (lagrangien tracking, lattice Boltzmann, DEM, SPH...), but high cost to deal with the interaction of particles

Exemple 1: elimination of inclusion at interfaces

Industrial context

- Metallurgical treatments done in ladle before continuous casting of steel
- Ladle is a reactor where complex multiphase phenomena occur:
 - Steel stirring by argon injection
 - Steel/slag deformation
 - Slag droplets emulsification
 - Solid alloy transport and melting
 - Inclusions precipitation...
- Inclusions control has a crucial role in the quality of continuously cast slabs

Typical mechanisms to be considered

- Particle interaction with interface (gas/liquid/solid)
- Interfacial area, depending on local turbulence and local mass transfer
- Inclusion nucleation/growth/collision/composition
- Bubble break-up, coalescence
- ...

CFD model

- Commercial CFD software AnsysFluent[™]
- Simulation domain consists of five phases:
 - liquid steel
 - slag layer
 - inclusions
 - argon
 - and upper gas
- Phase interfaces calculated by the VOF method with the Piecewise-Linear Interface Construction (PLIC)
- Inclusions (supposed spherical and solid) trajectories calculated by DPM method.
- In 3D, bubbles are tracked by Discrete Phase Model (DPM) for computational cost reason
- Realizable k-ε turbulence model is used with standard logarithmic wall functions

But correct entrapment criteria of inclusions at interfaces is required

Boundary Condition -Inclusion emersion

√Spontaneous emersion if free energy for system 2 is lower than free energy for system 1
√Considering that solid oxide piece is small with unit surface and only surface forces can be considered:

$$\begin{array}{c} G_1 = \sigma_{i/m} + \sigma_{i/m} + \sigma_m \\ G_2 = \sigma_{i/m} + \sigma_i \end{array} \end{array} \right\} \quad \Delta G = G_2 - G_1 = \sigma_i - \sigma_{i/m} - \sigma_n$$

√Equilibrium of triple point : $\sigma_i - \sigma_m \cos \theta - \sigma_{i/m} = 0$

 $\Delta G = \sigma_m (\cos \theta - 1)$

√Spontaneous emersion if there is a decrease of free energy or $\Delta G < 0$ *From Kozakevitch*

From Kozakevitch & Lucas, 1971

Inclusion: alumina	θ	$\sigma_{m}^{}\left(\text{N/m} ight)$	∆G
Pure iron	140°	1.80	-3.179
Fe, 4% carbon	133°	1.73	-2.910
Fe, 0.07% oxygen	80°	1.10	-0.909
Fe 0.02% sulfur	140°	1.39	-2.455

Dewetting of torical shape film

- According to Buguin et al. (1999), in case of dewetting of water on an hydrophobic plate, a toric shape is observed
- We can expect the same behaviour between liquid steel and alumina inclusions

• This 2nd order ODE is solved with Scilab[™] software

Withdrawal time compared to turbulence characteristic time

• Evolution of dewetting with constant film thickness (h=5 μ m, θ =110°, σ_m =1.4 N/m, D=200 μ m)

- Film ejection is much more rapid than typical time scales of turbulence
- ➡ High entrapment efficiency
- Robust adhesion, once inclusion is entrapped

- Bubble Induced Turbulence, due to vortex shedding from the rising bubbles, is the key mechanism for the creation of turbulent eddies in this situation
- Time scale proposed by Lopez de Bertodano (1992):

Video of a VOF bubbles 2D simulation

Contours of Density (kg/m3)

Particle tracks ranged by diameter (m)

Time evolution of inclusion number

Comparison with experimental results: deoxidation constant

Desulfurization - Industrial context

Decrease of sulfur content in liquid steel.

Basic chemical reaction:

 $(CaO)+\underline{S} \rightarrow (CaS)+\underline{O}$

 \underline{O} , \underline{S} : dissolved elements in liquid steel CaO, CaS: lime and calcium sulfide in the s

Kinetics of desulfurization:

$$\frac{d\underline{S}_t}{dt} = -\beta \frac{A}{V} \left[\underline{S}_t - \frac{(S)_t}{L_S} \right]$$

 β : mass transfer coeffcient

 \underline{S}_{t} , (S)_t: sulfur content in liquid steel and slag at time t

A, V: surface of exchange and slag volume

L_s: sulfur partition coefficient between liquid steel and slag

~3 m

Steel desulfurization

RFCS report, 2003. Secondary steelmaking: Desulphurization of liquid steel with refining top slags

Top slag:
$$\beta_{S,M} = 9.1 \times 10^3 D_{S,M} \sqrt{u_0}$$
 - metal side

Slag droplet: $Sh = 2 + Re^{1/2} Sc^{1/3}$ with 0.5<Re<1000 Sh = -2

$$=\frac{\beta_{S,M} \varnothing_{slag \, droplet}}{D_{S,M}}$$

Riboud-Vasse formalism

 D_S is the sulfur diffusivity in liquid steel $K \sim 500 \text{ m}^{-1/2}$ - estimated industrially for a wide range of gas flow rate and ladle size Q: argon flow rate A: ladle section

Application of the different correlations

Simpler configuration: continuous casting mold

Calculations with Thetis

→Developed at Institut de Mécanique et d'Ingénierie de Bordeaux – Trèfle Department – specialized for complex interface tracking with turbulence

Surface Divergence Model - BANERJEE, S., LAKEHAL, D., M. FULGOSI, M., (2004), "Surface divergence models for scalar exchange between turbulent streams", *International Journal of Multiphase Flow*, **30**, 963-977.

→The boundary conditions are periodic in the streamwise and spanwise directions

→Symmetry conditions are imposed in the direction normal to the interface.

→ Pressure gradient is imposed in the x direction for liquid so that the max velocity in liquid steel is ~0.3 m/s : 5.27 Pa m⁻¹.

 \rightarrow Slag is entrained by liquid steel

ArcelorMitta

Species diffusion

$$\delta = 5v_L / u_L^* \approx 2.8 \ 10^{-3} m$$
 $\delta_m = \delta Sc^{-1/3}$

Mean species concentration at t=4 s, for Sc=10 (top), 100 (middle), 1000 (bottom).

Species diffusion on both sides of the interface

Sc=100 (green), Sc=1000 (blue).

Shear stress, friction velocity and mass transfer coefficients

	$ au_{i,ls}$	$ au_{i,sl}$	u_{ls}^*	u_{sl}^*	ls
	(Pa)	(Pa)	(m/s)	(m/s)	s
t=1.4s	0.46	0.48	0.0081	0.014	
t=4s	0.23	0.26	0.0057	0.01	
t=6s	0.22	0.22	0.0055	0.0092	

ls: liquid steel.

sl: slag.

	Mass transfer	Mass transfer
	coefficient, steel	coefficient, slag
	side $(m.s^{-1})$	side, $(m.s^{-1})$
Sc=10	4.94E-05	4.23E-04
Sc=100	1.16E-05	1.33E-04
Sc=1000	1.37E-06	2.81E-05

Mass transfer coefficients, t = 4 s.

Dependence of mass transfer on Schmidt number, liquid steel side.

Inclusion entrapment by mushy zone

Objective: determine the number and location of inclusions entrapped by the mushy zone

• Methodology : 3-steps calculations

Multiscale modelling & entrapment model at mushy zone ArcelorMittal

Lagrangian tracking of inclusions

- Particles are subject to many forces:
 - Lubrication force
 - Surface gradient energy force
 - Van der Waals force
 - Buoyancy
 - Lift force
 - Drag force

Quan Yuan, *Transient Study of Turbulent Flow and Particle Transport During Continuous Casting of Steel Slabs,* Ph.D. thesis, University of Illinois at Urbana-Champaign, IL, 2004.

02/12/2014

PDAS evolution

PDAS predicted:

$$PDAS = \sqrt{\frac{3(T_{liq} - T_{sol})}{G}} \cdot \sqrt{r_d}$$

r_d: dendrite tip radius G is the thermal gradient in the mushy zone Utilisation de la CFD en génie des procédés

Measured PDAS:

Exemple 2: inclusions entrapment in the mold

Repartition of inclusions entrapment:

		W = 1675 mm	W = 2000 mm]
	Entrapped by slag	8%	8%]
d _p = 50 - 100 um	Entrapped by solidification front	84%	83%	So impact of slab width on smaller inclusions entrapment
	Reaching mold lower outlet	8%	9%	
	Entrapped by slag	98%	60%	⇔40% of large inclusions are
d _p = 500	Entrapped by solidification front	2%	40%	entrapped by the solidification front for W=2000 mm: in good
P	Reaching mold lower outlet	0%	0%	agreement with slivers industrial trends

Conclusion

- Multiphase modelling is becoming more and more mature and is widely used for steelmaking process optimization – still some limitations for multiphysic problems
- Local refining of the mesh: attractive method to deal with multiscale problem but meshless techniques are naturally efficient
- When local mechanisms are depending on mesoscopic phenomenon: one-way coupling from the cell to the micro-scale
- More and more difficult to get data for the validation