

Quelques enjeux de l'élaboration, de la mise en forme et des propriétés en service des biocomposites

Pierre Dumont, Laurent Orgéas, Florian Martoïa, Arnaud Regazzi

Univ. Grenoble Alpes LGP2/3SR

Les composites à base de matrice polymère et de renforts biosoucés

Objectifs : propriétés mécaniques équivalentes aux composites à fibre de verre

Quelques problématiques bien connues...

- ✓ Dispersion des propriétés surfaciques, morphologiques, mécaniques, etc. des fibres
- ✓ Propriétés cohésives et adhésives des interfaces

... Et des problématiques moins abordées

- ✓ Phénomènes d'hygroexpansion des fibres et des matrices
- ✓ Influence des conditions de mise en forme

Les composites à base de matrice polymère et de renforts biosoucés

Comment améliorer les propriétés des composites à renforts biosourcés ?

- > Tirer partie des
 - propriétés spécifiques importantes des nano et microrenforts extraits des fibres naturelles

Propriétés à l'état natif des matériaux p. ex. à l'état pulvérulent (poudre d'amidon)

- ✓ « Défauts » de ces matériaux
- ✓ Améliorer les procédés d'élaboration

✓ Pour un contrôle accru des propriétés microstructurales

Pour aller vers une structure sandwich biosourcée

Polymère renforcé + mats/tissus/UD de fibres végétales

NFC foams

1 kg.m^-3 < ho <100 kg.m^-3

Coll. N. Belgacem (LGP2), J.-L. Putaux (CERMAV)

Complexité géométrique

Objectifs : composites à multi-échelles de renforts dont les propriétés mécaniques sont équivalentes aux composites « traditionnels » à fibres de verre

Imprégnation of de renforts de fibres naturelles par des matrices polymères renforcées par des nano et microfibrilles d<u>e cellulose</u>

Renforts multi-échelles

Composites biosourcés avec une plus grande raideur et une ténacité accrue

Thèse F. Martoïa (2015)

←ref. --0.5 % NFC_

Amélioration de E et F

20

25

30

Elaboration de semi-produits

- Option 1 : poudre biosourcée semi-cristalline à l'état natif + imprégnation par voie sèche
- Option 2 : matrice renforcée de NFC+ imprégnation par voie liquide

Mise en forme des semi-produits

- Caractérisation des microstructures et de leur évolution sous chargements thermo-hygromécaniques
- Procédé de compression-estampage

Option 1 - Elaboration des semi-produits : matrice renforcée + renforts de fibres végétales (voie sèche)

Verrou : conserver la cristallinité native de grains d'amidon

Post-doc A. Regazzi (2015) IE M. Teil (2015)

Confocal laser scanning <u>micrographs</u> of the <u>internal</u> structure of regular maize starch http://dx.doi.org/10.1016/j.foodhyd.2012.11.032

Frittage ultrasons

Coll. B. Harthong, R. Peyroux, D. Imbault (3SR), J.-L. Putaux (CERMAV)

Option 1 - Elaboration des semi-produits : matrice renforcée + renforts de fibres végétales (voie sèche)

Verrou : assurer une bonne soudure des grains

Thermocompression

Post-doc A. Regazzi (2015) IE M. Teil (2015)

Frittage ultrasons

- Défauts à toutes les échelles
- Fracture intra-grains

Option 2 - Elaboration des semi-produits : matrice renforcée de NFC imprégnation par voie liquide

Extraction des nano et microfibrilles de cellulose

Thèse F. Martoïa (2015)

- 3 classes d'éléments pour des NFC enzymatiques
- Fibres partiellement fibrillées (d ≈ 20 μm and l ≈ 250 μm)
- Mèches de fibrilles (d > 100 nm and l ≈ 1-10 µm)
- Ind. fibrilles (d ≈ 30 nm and l < 5 µm)</p>
- 2 classes d'éléments pour des NFC TEMPO
- Fibres partiellement fibrillées
 (d ≈ 25 μm and l ≈ 600 μm)
- Fibrilles individuelles (d ≈ 5 nm and l ≈ 1.5 µm)

Option 2 - Elaboration des semi-produits : matrice renforcée de NFC imprégnation par voie liquide

Rhéologie des suspensions de NFC

Thèse F. Martoïa (2015)

Coll. S. Manneville (ENS Lyon)

Option 2 - Elaboration des semi-produits : matrice renforcée de NFC imprégnation par voie liquide

■ Profils de vitesse \rightarrow vitesses plus fortes que la vitesse du rotor (écoulements 2D)

vitesse du rotor (écoulements 2D)

Effets élastiques ou présence de mouvements rotationnels d'agrégats colloïdaux

Thèse F. Martoïa (2015)

Verrou : caractérisation des microstructures et de leur évolution

Thèse F. Martoïa (2015)

- comportement élasto-viscoplastique)
- Mécanismes d'endommagemment méso et micro complexes

Verrou : caractérisation des microstructures et de leur évolution à toutes les échelles

→ Séparation des phases présentant un faible contraste

Coll. S. Rolland du Roscoat (3SR, ESRF)

- Verrou : caractérisation des microstructures et de leur évolution à toutes les échelles
 - → Individualisation des fibres dans un réseau fibreux

- Verrou : caractérisation des microstructures et de leur évolution
 - → Description et modélisation de la mécanique complexe de déformation des fibres et des réseaux (couplages cinématiques)

Evolution de l'orientation et de la déformation de sections matérielles des fibres

Coll. M. Toungara (ENTPE, Bamako)

- Verrou : caractérisation des microstructures et de leur évolution
 - → Description et modélisation de la mécanique complexe de déformation des fibres et des réseaux (couplages cinématiques)

Evolution de l'orientation et de la déformation de sections matérielles des fibres

Coll. M. Toungara (ENTPE, Bamako)

- Verrou : caractérisation des microstructures et de leur évolution à toutes les échelles
 - → Analyse des phénomènes d'hygroexpansion à l'échelle de la fibre in situ dans un réseau fibreux

Thèse C. Marulier (2013) Post-doc J. Viguié (2013)

Vers une analyse automatique des microstructures

- Verrou : comportement rhéologique lors de la mise en forme
 - → Compréhension des évolutions de microstructure

Thèse J.-P. Vassal (2007) Thèse T.-H. Le (2008) Thèse O. Guiraud (2011) Thèse P. Latil (2012) Thèse T. Laurencin (2016) Thèse D. Ferré-Sentis (2016) Thèse D. Kunhappan (2017)

- Verrou : comportement rhéologique lors de la mise en forme
 - → Compréhension des évolutions de microstructure

Composite à fibres de lin

Consolidation du renfort fibreux et phénomène de séparation fibres-matrice

Coll. P. Vroman, B. Vermeulen (ENSAIT)

Pour aller vers une structure sandwich biosourcée

- Résistance en flexion
- Propriétés d'isolation thermique et acoustique

Peau (bonnes propriétés mécaniques)

Polymère renforcé + mats/tissus/UD de fibres végétales

NFC foams

1 kg.m⁻³ < ho <100 kg.m⁻³

Elaboration de mousses de NFC par lyophilisation

Verrou : compréhension de l'influence des conditions d'élaboration sur les microstructures Thèse F. Martoïa (2015)

Optimisation des conditions de solidification des suspensions

Compréhension de la contribution des interactions colloïdales sur les mécanismes de ségrégation et de redistribution

Ρ

Elaboration de mousses de NFC par lyophilisation

Verrou : caractérisation des microstructures des mousses

Thèse F. Martoïa (2015)

Description 2D (MEB) limitée
 Aller vers la 3D

Kraynik et al., PRE., 2006

Elaboration de mousses de NFC par lyophilisation

- Comportement élasto-viscoplastique anisotrope
- Plateau d'écrouissage (≠ de la plupart des mousses polymères)
- Effets auxétiques ?

Remerciements

TekLiCell

Les micro et nanofibrilles de cellulose (MFC - NFC)

Les NFC/MFC sont extraites sous forme de suspens colloïdales aqueuses

Multi-scale shear rheology

TEMPO NFC suspensions ($f^{el} >> f^{vdw} + f^H$)

Competition between structuration phenomena (through colloidal interactions) at low shear rates and destructuration phenomena (viscous forces) at high shear rates