Modélisation LES d'écoulements turbulents réactifs industriels

Domaines automobile et procédés

C. Angelberger, O. Colin, A. Robert, K. Truffin, C. Locci

Direction Systèmes Moteurs & Véhicules

Intérêt de la LES pour prédire la combustion dans les moteurs à piston

Etude LES du cliquetis dans un moteur à allumage commandé downsizé

LES de combustion sans flamme

Conclusions & perspectives

Intérêt de la LES pour prédire la combustion dans les moteurs à piston

Cyclic Combustion Variability (CCV) in sparkignition engines

Abnormal combustion & CCV

Immediate damage Fatigue damage super-knock P_{cyl} knock **Pre-ignition Normal** combustion **Spark ignition** Limits of abnormal 140 Pmax [bar] 120 combustion intrinsically 100 80 Multi-Anna Milling larger and the Stand of the second state of the second state and the second state of the se linked to cyclic 60 :PEN 40 variability 200 300 400 500 600 5 100 700

Cycle

© IFPEN

6

Chargies The difficulty of predicting Cyclic Combustion Variablity in SI engines

CCV result from interactions between many non-linear phenomena

Chergies The French concerted research framework around LES for ICE around AVBP

Etude LES du cliquetis dans un moteur à allumage commandé downsizé

Predicting "normal" combustion: The ECFM-LES model

Transport equation for a progress variable

Transport equation for the flame surface density

© IFP

Energies Predicting fresh gases' auto-ignition: The **Tabulated Kinetics of Ignition (TKI-LES²)** model

Quantitative prediction of CCV by LES for the two unstable points

Comparing LES predictions with experimental Energies nouvelles findings

Energies Temporal zoom on an exterme knocking cycle predicted by LES

Quantitative study of knock : Energies nouvelles % knocking cycles & max. intensity

Energies Spatial & temporal occurrence of knock onset

Different scenarios depending on the spark advance

LES de combustion sans flamme

Energies nouvelles

Chargies The flameless model burner of Verissimo

- Main inlet
 - Heated air at 673 K
 - Velocity 113.2 m/s
- 16 CH₄ injectors
 - Velocity 6.2 m/s
- Burnt gases recirculation favored by high air momentum
- 10 KW of total power

- Numerical setup:
 - 20 million tetrahedral cells
 - Minimum cell size: 0.3 mm

Modelling flameless combustion: The Diluted Homogeneous Reactor (DHR) model

Energies LES predictions of time-averaged mean profiles

x[mm]

	Strain	Strain=0	Enthalpy loss	NO non linear
NORA [Vervisch,2011]				(No Prompt)
LM [lhme,2008] (FPV)				
Zoller [2011] (PDF)				
DF-NORA (PCM)				

- Standard CFD tools based on RANS reach their limits when it comes to certain physical questions
 - RANS allows fast evaluations of design variations under the hypothesis of small cyclic variations
- LES on practical meshes require accurate sub-grid models
 - Combustion, sprays, mixing, pollutants
- LES allows predicting & understanding cyclic combustion variability in piston engines
 - Illustrated for studying and understanding knock in dowmsized engines)
- LES generally allows improving predictions of flows where mixing phenomena are crucial
 - Illustrated using flameless combustion
- LES will also allow gaining a deeper insight into other non-cyclic engine phenomena
 - Super-knock, fast operating point transients, cold starts, combustion mode switching, ...

Innovating for energy

www.ifpen.com powertrain-modeling-simulation.ifpen.com

PSA PEUGEOT CITRO

Acknowledgements:

- ✓ Financial support from Groupement Scientifique Moteur, Renault, PSA Peugeot-Citroën
- ✓ Financial support from ANR (SGEmac, CamPas, ICAMDAC & ASTRIDE projects)
- ✓ Financial support by the European Commission (LESSCO2 & LESSCCV projects)
- ✓ Computing resources provided by GENCI & PRACE

